# TSC Sb

# **TS9001**

# 300mA CMOS Low Dropout Voltage Regulator with Enable

SOT-25

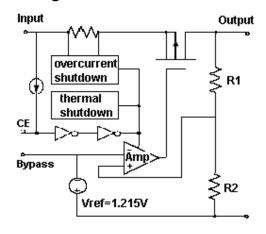
Pin assignment

- 5 4
- Input
  Ground
- 3. Enable
- 4. Bypass
- 5. Output

# Low Drop Out Voltage 0.4V Enable Shutdown

### **General Description**

The TS9011 series is a positive voltage linear regulator developed utilizing CMOS technology featured low quiescent current (30uA typ.), low dropout voltage, and high output voltage accuracy, making them ideal for battery applications. The Chip Enable (CE) includes a CMOS or TTL compatible input allows the output to be turned off to prolong battery life. The TS9001 series is included a precision voltage reference, error correction circuit, a current limited output driver, over temperature shutdown, and a reference bypass pin to improve its already excellent low-noise performance. This series are offered in 5-pin SOT-25 package.


#### **Features**

- Dropout voltage typically 0.4V@lo=300mA (Vo>2.5V)
- ♦ Output current up to 300mA
- ♦ Low power consumption
- ♦ Output voltage +/-2%
- ♦ Internal current limit and thermal shutdown
- ♦ Thermal shutdown protection

## **Applications**

- ♦ Palmtops
- ♦ Video recorders
- Battery powered equipment
- ♦ PC peripherals
- High-efficiency linear power supplies
- ♦ Digital signal camera

### **Block Diagram**



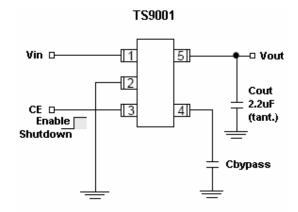
### Ordering Information

| Part No.            | Operating Temp.<br>(Ambient) | Package |
|---------------------|------------------------------|---------|
| TS9001 <u>x</u> CX5 | -40 ~ +85 °C                 | SOT-25  |

Note: Where  $\underline{\mathbf{x}}$  denotes voltage option, available are

**A=**1.5V

**D**=1.8V,


**K**=2.5V,

**P**=3.0V,

S=3.3V,

Contact factory for additional voltage options.

## **Typical Application Circuit**



CE (pin 3) may be connected directly to Vin (pin 1) Low noise operation: Cbypass=470pF, Cout>2.2uF Basic operation: Cbypass=not used, Cout>1uF



| Absolute Maximum Rating              |                  |                   |      |  |  |
|--------------------------------------|------------------|-------------------|------|--|--|
| Input Supply Voltage                 | Vin              | +7                | V    |  |  |
| Enable Input Voltage                 | Vce              | Gnd-0.3 ~ Vin+0.3 | V    |  |  |
| Output Current                       | lo               | Pd / (Vin – Vout) |      |  |  |
| Power Dissipation                    | P <sub>D</sub>   | 380               | mW   |  |  |
| Thermal Resistance                   | Өја              | 260               | °C/W |  |  |
| Operating Junction Temperature Range | Tj               | -40 ~ +125        | °C   |  |  |
| Storage Temperature Range            | T <sub>STG</sub> | -65 ~ +150        | °C   |  |  |
| Lead Soldering Temperature (260 °C)  |                  | 5                 | S    |  |  |

Caution: Stress above the listed absolute rating may cause permanent damage to the device.

## **Electrical Characteristics**

Ta = 25 °C, lo=1mA, Cout=2.2uF, Vce≥2V, unless otherwise specified.

| Parameter                       | Conditions                 |            | Min      | Тур  | Max      | Unit   |
|---------------------------------|----------------------------|------------|----------|------|----------|--------|
| Output Voltage                  | Vin=Vo + 1V                |            | 0.985 Vo |      | 1.015 Vo | V      |
| Output Voltage Temperature      |                            |            |          | 50   |          | ppm/°C |
| Coefficient                     |                            |            |          |      |          |        |
| Maximum Output Current          | Vin=Vo+1V,                 |            | 300      |      |          | mA     |
| Line Regulation                 | $Vo+1V \le Vin \le 7V$     |            |          |      | 0.3      | %/V    |
| Load Regulation                 | Vin=Vo+1V,                 | Vout≥2.5V  |          | 0.2  | 1.0      |        |
|                                 | 1mA≤I <sub>L</sub> ≤300mA  |            |          |      |          | %/V    |
|                                 | Vin=Vo+1V,                 | Vout<2.5V  |          | 0.2  | 1.0      |        |
|                                 | 1mA≤I <sub>L</sub> ≤200mA  |            |          |      |          |        |
| Dropout Voltage                 | Io=300mA,                  | Vout≥2.5V  |          | 300  |          | mV     |
|                                 | Vout=Vo - 2%               |            |          |      |          |        |
|                                 | lo=200mA,                  | Vout<2.5V  |          | 800  | 1000     |        |
|                                 | Vout=Vo - 2%               |            |          |      |          |        |
| Quiescent Current               | Vin≤0.4V (shutdown)        |            |          | 2    | 3        | uA     |
| Ground Pin Current              | Io=1mA to 300mA            |            |          | 30   | 50       | uA     |
| Output Current Limit            | Vout=0V                    |            |          | 450  |          | mA     |
| Power Supply Rejection Ratio    | At f=1kHz, lo=100mA,       |            |          | 60   |          | dB     |
| Power Supply Rejection Ratio    | At f=1kHz, lo=100mA,       |            |          | 75   |          | dB     |
|                                 | Cbypass=0.01uF             |            |          |      |          |        |
| Output Noise Io=10mA, f=        |                            | to 100kHz, |          | 30   |          | uVrms  |
|                                 | 10pF from bypass to Ground |            |          |      |          |        |
| Enable Input                    |                            |            |          |      |          |        |
| Enable Input Logic-Low Voltage  | Regulation shutdown        |            |          |      | 0.4      | V      |
| Enable Input Logic-High Voltage | Regulation enable          |            | 2.0      |      |          | V      |
| Enable Input Current            | V <sub>IL</sub> ≤0.4V      |            |          | 0.01 | 1        | uA     |
|                                 | V <sub>IL</sub> ≥2.0V      |            |          | 1    | 5        |        |



#### **Detail Description**

#### Description

The TS9001 series of CMOS regulators contain a P-MOS pass transistor, voltage reference, error amplifier, over current protection, thermal shutdown and short circuit protection.

The TS9001 series switches from voltage mode to current mode when the load exceeds the rated output current. This prevents over stress. The TS9000 also incorporates current fold-back to reduce power dissipation when the output is short circuit. This feature becomes active when the output drops below 1.05V, and reduces the current flow by 65%. Full current is restored when the voltage exceeds 0.95V.

The internal P-channel pass transistor receives data from the error amplifier, over current shutdown, short output protection and thermal protection circuits. During normal operation, the error amplifier compares the output voltage to a precision reference. Over current and thermal shutdown circuits become active when the junction temperature exceeds 150 °C, or the current exceeds 300mA. During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below 120 °C.

#### **Enable**

The Chip Enable pin normally floats high. When actively, pulled low, the PMOS pass transistor shut off, and all internal circuits are powered down. In this state, the quiescent current is less than 5uA. This pin behaves much like an electronic switch.

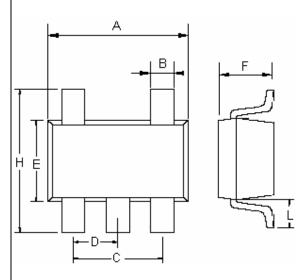
#### **External Capacitor**

The TS9001 series is stable with an output capacitor to ground of 2.2uF or greater. It can keep stable even with higher or poor ESR capacitors.

A second capacitor is recommended between the input and ground to stabilize Vin. The input capacitor should be larger than 0.1uF to have a beneficial effect.

A third capacitor can be connected between the Bypass pin and Ground. This capacitor can be a low cost polyester film variety between the value of 1~10nF. A larger capacitor improves the AC ripple rejection, but also makes the output come up slowly. This "soft" turn-on is desirable in some applications to limit turn-on surges.

All capacitors should be placed in close proximity to the pins. A "quiet" ground termination is desirable.


TS9001 series 3-5 2003/12 rev. A



# **Application Examples Standard Circuit** Vout Vin RL CE Vin Cin **Bypass** Cout 2.2uF 1uF Gnd 777 **Typical Application Circuit 1** Vin Vout Vin Cin CE Bypass Cout 1uF Cbypass Vce 2.2uF Gnd 10nF **Typical Application Circuit 2** Open Vin Vout **Bypass** CE Vin Gnd Vce



# SOT-25 Mechanical Drawing



| SOT-23 DIMENSION |             |      |            |       |  |
|------------------|-------------|------|------------|-------|--|
| DIM              | MILLIMETERS |      | INCHES     |       |  |
|                  | MIN         | MAX  | MIN        | MAX   |  |
| Α                | 2.70        | 3.00 | 0.106      | 0.118 |  |
| В                | 0.25        | 0.50 | 0.010      | 0.020 |  |
| С                | 1.90(typ)   |      | 0.075(typ) |       |  |
| D                | 0.95(typ)   |      | 0.037(typ) |       |  |
| Ε                | 1.50        | 1.70 | 0.059      | 0.067 |  |
| F                | 1.05        | 1.35 | 0.041      | 0.053 |  |
| Н                | 2.60        | 3.00 | 0.102      | 0.118 |  |
| L                | 0.60(typ)   |      | 0.024(typ) |       |  |